Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9916522

Oblicz miarę kąta wpisanego opartego na średnicy okręgu.

Wersja PDF
Rozwiązanie

Powiedzmy, że kąt ∡ACB jest oparty na średnicy AB okręgu.


PIC


Poprowadźmy promień OC i oznaczmy ∡A = α i ∡B = β . Trójkąty AOC i BOC są równoramienne, więc ∡ACO = α i ∡BCO = β . Stąd

 ∘ ∡AOC = 180 − 2α ∡BOC = 180∘ − 2β .

Suma tych dwóch kątów jest równa  ∘ 18 0 , skąd

 180∘ = 180∘ − 2α + 180 ∘ − 2 β ∘ ∘ 180 = 360 − 2(α + β ) 2(α + β ) = 180∘ ∘ α + β = 90 ∡C = 90∘.

 
Odpowiedź:  ∘ 90

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!