Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 3655076

W ciągu arytmetycznym (an) , określonym dla n ≥ 1 , dane są: a 1 = 5 , a2 = 1 1 . Wtedy
A) a14 = 71 B) a12 = 71 C) a = 71 11 D) a = 71 10

Wersja PDF
Rozwiązanie

Różnica ciągu (an) jest równa

r = a 2 − a1 = 11− 5 = 6.

Stąd

an = a1 + (n − 1)r = 5+ 6 (n− 1) = 6n − 1.

Sposób I

Sprawdzamy, który wyraz ciągu jest równy 71.

71 = 6n − 1 72 = 6n ⇒ n = 12.

Sposób II

Ze wzoru na n –ty wyraz ciągu (an ) mamy

a10 = 60 − 1 = 59 a11 = 66 − 1 = 65 a12 = 72 − 1 = 71 .

 
Odpowiedź: B

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!