/Studia

Zadanie nr 7704179

Dodaj do ulubionych
Dodaj do rozwiązanych

Oblicz granicę  ( (n+-1)2- n2+5-) nl→im+∞ n+2 − n+1 .

Rozwiązanie

Liczymy

 ( 2 2 ) 3 2 lim (n-+-1-)-− n-+--5- = lim (n-+--1)-−-(n--+--5)(n+--2) = n→ +∞ n + 2 n + 1 n→ +∞ (n + 2)(n+ 1) n 3 + 3n 2 + 3n + 1 − (n3 + 2n2 + 5n + 1 0) n2 − 2n − 9 = lim ------------------------------------------ = lim ---------------. n→ +∞ (n + 2)(n + 1) n→ +∞ (n + 2)(n+ 1)

Dzielimy teraz licznik i mianownik przez n 2 .

 n2 − 2n − 9 1− 2n − n92 1 − 0 − 0 lim --------------- = lim -----2------1--= ---------------- = 1. n→ +∞ (n + 2)(n+ 1) n→ + ∞ (1+ n)(1 + n) (1 + 0) ⋅(1+ 0)

 
Odpowiedź: 1

Wersja PDF
spinner