Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 2057082

Wartość wyrażenia  ∘ ∘ ∘ ∘ sin32 cos 58 + cos32 sin58 jest równa
A) − 1 B) 1 C) 0 D) 2

Wersja PDF
Rozwiązanie

Sposób I

Skorzystamy z następujących wzorów

sin(90∘ − α) = co sα ∘ cos(90 − α ) = sin α sin2α + co s2α = 1.

Liczymy

sin 32∘co s58∘ + cos 32∘sin 58∘ = ∘ ∘ ∘ ∘ ∘ ∘ = sin 32 co s(9 0 − 32 )+ cos32 sin(90 − 32 ) = = sin2 32∘ + cos232∘ = 1.

Sposób II

Tym razem skorzystamy ze wzoru na sinus sumy.

sin (x+ y) = sin xcos y+ sin y cosx .

Liczymy

sin 32∘ cos58∘ + co s32∘ sin 58∘ = ∘ ∘ ∘ = sin(32 + 5 8 ) = sin 90 = 1.

 
Odpowiedź: B

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!