/Szkoła średnia/Zadania testowe/Geometria/Geometria analityczna/Równanie prostej/Położenie względem osi

Zadanie nr 8599594

Dodaj do ulubionych
Dodaj do rozwiązanych

Na rysunku przedstawiona jest prosta k , przechodząca przez punkt A = (3,− 2) i przez początek układu współrzędnych, oraz zaznaczony jest kąt α nachylenia tej prostej do osi Ox .


PIC


Zatem
A) tg α = − 23 B) tgα = − 32 C) tg α = 2 3 D) tg α = 3 2

Rozwiązanie

Sposób I

Niech O będzie początkiem układu współrzędnych, a B rzutem punktu A na oś Ox .


PIC

Mamy zatem

 AB 2 tg α = tg(1 80∘ − β) = − tg β = − ----= − --. OB 3

Sposób II

Napiszmy równanie prostej k . Jest to prosta postaci y = ax . Współczynnik a obliczamy podstawiając współrzędne punktu A .

 2 − 2 = 3a ⇒ a = − -. 3

Otrzymany współczynnik kierunkowy to dokładnie interesujący nas tgα .  
Odpowiedź: A

Wersja PDF
spinner