Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 3875555

W okręgu o środku S zaznaczono kąt oparty na łuku AB . Przez punkt B poprowadzono prostą k styczną do okręgu.


PIC


Zaznaczony na rysunku kąt α zawarty między styczną k i cięciwą AB ma miarę
A) 21∘ B) 4 2∘ C) 48∘ D)  ∘ 69

Wersja PDF
Rozwiązanie

Sposób I

Zauważmy, że trójkąt ABS jest równoramienny, więc

 180∘ − 138 ∘ 42 ∘ ∡ABS = ------------= ----= 21∘. 2 2

Styczna k jest prostopadła do promienia SB , więc

 ∘ ∘ ∘ α = 90 − 21 = 69 .

Sposób II

Tym razem skorzystamy z twierdzenia o stycznej.


PIC

Na mocy tego twierdzenia interesujący nas kąt α między sieczną i styczną ma taką samą miarę jak kąt wpisany oparty na cięciwie AB . Stąd

α = 1-⋅138∘ = 69∘. 2

 
Odpowiedź: D

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!