Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 7836365

Ile jest liczb naturalnych sześciocyfrowych, których iloczyn cyfr jest różny od 49?
A) 899 970 B) 899 969 C) 899 985 D) 899 984

Wersja PDF
Rozwiązanie

Zastanówmy się najpierw, kiedy iloczyn cyfr w liczbie sześciocyfrowej może być równy 49? Aby tak było, dwie z cyfr tej liczby muszą być równe 7, a cztery pozostałe muszą być równe 1. Jest więc

( ) 6 = 6-⋅5 = 1 5 2 2

takich liczb (wybieramy miejsca dla siódemek, a na pozostałych miejscach umieszczamy jedynki).

Wszystkich liczb sześciocyfrowych jest

9999 99− 99999 = 900000,

więc liczb spełniających warunki zadania jest

900000 − 15 = 89998 5.

 
Odpowiedź: C

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!