Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 7569624

W trójkącie ABC punkt S jest środkiem okręgu wpisanego, a punkty M i N są punktami styczności tego okręgu z bokami AB i AC odpowiednio. Wykaż, że punkt S leży na okręgu opisanym na trójkącie AMN .

Wersja PDF
Rozwiązanie

Szkicujemy opisaną sytuację.


PIC


Odcinek łączący środek okręgu z punktem styczności jest prostopadły do stycznej poprowadzonej w tym punkcie, więc ∡ANS = ∡AMS = 9 0∘ . To oznacza, że na czworokącie AMSN można opisać okrąg – jego średnicą jest zresztą odcinek AS . Zatem rzeczywiście S leży na okręgu opisanym na trójkącie AMN .

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!