Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6776401

Przez środek D przyprostokątnej BC trójkąta prostokątnego ABC poprowadzono prostą prostopadłą do przeciwprostokątnej AB . Prosta ta przecina proste AB i AC odpowiednio w punktach M i N . Wykaż, że skala podobieństwa trójkątów ABC i ANM jest równa -2cosα- 1+cos2α .


PIC


Wersja PDF
Rozwiązanie

Zauważmy, że trójkąty BMD i NCD są oba prostokątne i mają wspólny kąt przy wierzchołku D .


PIC


Ponadto

∡BDM = 90∘ − ∡MBD = 90∘ − ∡ABC = α.

Jeżeli oznaczymy BD = CD = x to z trójkątów BMD i NCD mamy

MD -----= co sα ⇒ MD = x cosα BD DC-- --x-- DN = cos α ⇒ DN = co sα .

W takim razie skala podobieństwa trójkątów ABC i ANM jest równa

k = -BC--= -BD--+-DC-- = -----2x-------= -2-cos-α--. MN MD + DN xco sα + coxsα cos2α + 1
Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!