Dorysujmy odcinki i
.
Sposób I
Zauważmy, że odcinki i
są do siebie równoległe. Odcinek
łączy środki ramion w trapezie
, więc jest równoległy do podstaw
i
. Zatem
.
Podobnie, patrząc na odcinki i
, uzasadniamy, że odcinek
jest równoległy do
i
. Zatem
. To oznacza, że trójkąt
jest równoramiennym trójkątem prostokątnym. W szczególności
.
Sposób II
Tak jak poprzednio zauważamy, że odcinki i
łączą środki ramion w trapezach
i
. Ponieważ odcinek łączący środki ramion trapezu ma długość równą średniej arytmetycznej długości podstaw, mamy