/Szkoła podstawowa/Zadania testowe

Zadanie nr 9748978

Dodaj do ulubionych
Dodaj do rozwiązanych

Na rysunku przedstawiony jest wykres funkcji liniowej f .


PIC


Funkcja f jest określona wzorem
A) y = 43x + 1 B) y = − 34x+ 1 C) y = − 3x + 1 D) y = 4x + 1

Rozwiązanie

Z podanego wykresu widać, że wykres funkcji przechodzi przez punkty (0,1) i (1 ,−2 ) .

Sposób I

Sprawdzamy, w którym wzorów otrzymamy y = 1 i y = − 2 po podstawieniu odpowiednio x = 0 i x = 1 . Gdy to zrobimy, okaże się, że tak jest tylko w przypadku funkcji: y = −3x + 1 .

Sposób II

Ponieważ dany wykres jest linią prostą, jest to wykres funkcji liniowej postaci y = ax+ b . Podstawiamy teraz współrzędne zauważonych wcześniej punktów wykresu i mamy

{ 1 = a⋅ 0+ b −2 = a⋅ 1+ b .

Z pierwszego równania mamy b = 1 , a z drugiego

a = − 2 − b = − 2 − 1 = − 3 .

Jest to więc funkcja y = − 3x + 1 .

Sposób III

Z danego rysunku widać, że mamy do czynienia z funkcją malejącą, więc jest to albo funkcja  3 y = − 4x+ 1 , albo y = − 3x + 1 . Sprawdzamy teraz, że tylko druga z nich przechodzi przez punkt (1,− 2) .  
Odpowiedź: C

Wersja PDF
spinner