/Szkoła średnia/Liczby/Liczby całkowite/Podzielność/1 literka

Zadanie nr 9126821

Dodaj do ulubionych
Dodaj do rozwiązanych

Wykaż, że liczba  n n n+2 n+ 2 3 − 2 + 3 − 2 jest podzielna przez 10, n ∈ N .

Rozwiązanie

Przekształcamy dane wyrażenie

 n n n+2 n+ 2 n n 2 n 2 n 3 − 2 + 3 − 2 = 3 − 2 + 3 ⋅3 − 2 ⋅2 = = 10 ⋅3n − 5 ⋅2n = 10 ⋅3n − 5 ⋅2⋅ 2n−1 = 10 ⋅3n − 10 ⋅2n− 1.

Widać teraz, że oba składniki dzielą się przez 10.

Wersja PDF
spinner