Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 3402896

Dane są cztery okręgi. Każdy z nich jest styczny zewnętrznie do dokładnie dwóch spośród trzech pozostałych okręgów. Udowodnij, że punkty styczności tych okręgów są wierzchołkami czworokąta, na którym można opisać okrąg.

Wersja PDF
Rozwiązanie

Zaczynamy od rysunku – od razu dorysujmy odcinki łączące środki danych okręgów.


PIC


Jeżeli oznaczymy kąty ostre trójkątów równoramiennych AKN ,KBL ,LCM i MDN jak na rysunku, to mamy

 ∘ ∡NKL = 180 − α − β ∡KLM = 18 0∘ − β− γ ∘ ∡LMN = 180 − γ − δ ∡MNK = 180∘ − α − δ.

Z tych równości łatwo widać, że

∡NKL + ∡LMN = ∡KLM + ∡MNK ,

co kończy dowód, bo jest to warunek wystarczający na to, żeby na czworokącie KLMN dało się opisać okrąg.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!