Zadanie nr 7665209
Wykaż, że punkt leży na dwusiecznej kąta między prostymi i . Napisz równanie tej dwusiecznej.
Rozwiązanie
Zaczynamy od szkicowego rysunku.
Punkty leżące na dwusiecznej kąta to punkty, które są równo odległe od jego ramion. Ponieważ i tak musimy wyznaczyć równanie dwusiecznej, zaczniemy od tego, a na końcu sprawdzimy, że leży na niej dany punkt. Na mocy wzoru na odległość punktu od prostej punkty na dwusiecznej muszą spełniać równanie.
Teraz dochodzimy do najtrudniejszego momentu, musimy opuścić wartości bezwzględne. Z jakim znakiem? To zależy od tego, o którą dwusieczną nam chodzi (są dwie). Dwusieczna przechodząca przez punkt leży całkowicie powyżej, albo całkowicie poniżej obu danych prostych, dlatego oba wyrażenia pod wartością bezwzględną mają na niej ten sam znak. Zatem opuszczamy wartości bezwzględne nie zmieniając znaku (mogliśmy też rozważyć dwa przypadki, a potem wybrać dwusieczną, o którą nam chodzi).
Teraz widać gołym okiem, że punkt leży na tej prostej.
Odpowiedź: