Zadanie nr 9604115
Oblicz dla jakich wartości parametrów i proste o równaniach: i są dwiema różnymi prostymi równoległymi.
Rozwiązanie
Przekształćmy równania prostych
Drugie przekształcenie ma oczywiście sens tylko, gdy . Dla druga prosta jest pionowa, więc na pewno nie jest równoległa do pierwsze prostej. Proste są równoległe, gdy mają takie same współczynniki kierunkowe, skąd otrzymujemy równanie
Sprawdźmy jeszcze kiedy proste są różne. Ponieważ równania prostych mają postać:
Proste będą różne, gdy
Odpowiedź: