Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 7751770

Na trapezie opisano okrąg o promieniu długości 25 cm. Dłuższa podstawa trapezu jest średnicą tego okręgu. Wiedząc że przekątna tego trapezu ma długość 40 cm, oblicz obwód tego trapezu.

Wersja PDF
Rozwiązanie

Narysujmy opisaną sytuację.


PIC


Jeżeli na trapezie ABCD można opisać okrąg, to

∡A = 180∘ − ∡C = ∡B ,

więc trapez jest równoramienny.

Ponieważ podstawa AB jest średnicą okręgu, trójkąt ABD jest prostokątny, skąd

 ∘ ------------ ∘ ---------- ∘ ------- √ -- AD = AB 2 − BD 2 = 502 − 402 = 10 52 − 42 = 10 9 = 30.

Obliczmy teraz wysokość DE trójkąta ABD (a więc również wysokość trapezu). Porównujemy dwa wzory na pole (inny sposób to wykorzystać podobieństwo trójkątów AED i ADB ).

1- 1- 2AB ⋅DE = 2 AD ⋅DB 50 ⋅DE = 30 ⋅40 ⇒ DE = 24 .

Jeżeli oznaczymy CD = a to z trójkąta prostokątnego AED mamy

 2 2 2 AE + ED = AD (25 − 0,5a )2 + 2 42 = 302 2 2 (25 − 0,5a ) = 324 = 1 8 25 − 0 ,5a = 18 0,5a = 7 ⇒ a = 1 4.

Zatem obwód trapezu jest równy

AB + 2BC + a = 50 + 60 + 14 = 1 24.

 
Odpowiedź: 124 cm

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!