Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6130725

Liczb naturalnych sześciocyfrowych podzielnych przez 5, których cyfra setek należy do zbioru {3,4,7,9 } i wszystkie cyfry są różne jest
A) 8 ⋅7⋅ 6⋅4 ⋅5 ⋅2 B) 8⋅ 7⋅6 ⋅4 ⋅5⋅ 1+ 7⋅7 ⋅6 ⋅4⋅ 5⋅1
C) 9 ⋅10 ⋅10 ⋅4⋅ 10⋅2 D) 8 ⋅8 ⋅7⋅4 ⋅6 ⋅1 + 9 ⋅8⋅7 ⋅4 ⋅6 ⋅1

Wersja PDF
Rozwiązanie

Cyfrą jedności utworzonej liczby musi być 0 lub 5.

Jeżeli cyfrą jedności jest 0, to na 4 sposoby wybieramy liczbę setek i na

8 ⋅7 ⋅6⋅ 5

sposobów wybieramy pozostałe cyfry.

Jeżeli cyfrą jedności jest 5, to jest podobnie, ale możliwości wyboru pierwszej cyfry (setek tysięcy jest mniej, bo nie może tam być zero. Pozostałe cztery cyfry możemy więc w tym przypadku wybrać na

7 ⋅7 ⋅6⋅ 5

sposobów. W sumie jest więc

4 ⋅8 ⋅7 ⋅6⋅5 + 4 ⋅7 ⋅7⋅ 6⋅5

liczb spełniających warunki zadania.  
Odpowiedź: B

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!