Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 4493035

Cięciwy AD i BC okręgu o środku O przecinają się w punkcie P tak, że |∡AP C | = 50∘ (zobacz rysunek).


PIC


Jeżeli punkt E jest punktem wspólnym prostych AC i BD , to miara kąta AEB jest równa
A) 40∘ B) 5 0∘ C) 60∘ D)  ∘ 70

Wersja PDF
Rozwiązanie

Sposób I

Zauważmy, że każdy z kątów: ADB i ACB jest oparty na średnicy AB . Zatem

 ∘ ∡ADB = ∡ACB = 90 .

Ponadto

 ∘ ∘ ∘ ∘ ∡CP D = 180 − ∡AP C = 180 − 50 = 130 .

Korzystamy teraz z tego, że suma kątów w czworokącie PCED jest równa 36 0∘ .

 ∘ α = ∡AEB = 360 − ∡CP D − ∡P CE − ∡P DE = = 360∘ − 130 ∘ − 90 ∘ − 9 0∘ = 50∘.

Sposób II

Tak jak poprzednio zauważamy, że

∡ADB = ∡ACB = 90∘.

Stąd

 ∘ α = ∡AEB = 90 − ∡DAC = = 90 ∘ − (9 0∘ − ∡AP C) = ∡AP C = 50∘.

Sposób III

Tak jak poprzednio zauważamy, że

∡ADB = ∡ACB = 90∘.

Trójkąty AED i AP C są oba prostokątne i mają wspólny kąt przy wierzchołku A . Są więc podobne. Zatem

∡AED = ∡AP C = 50∘.

 
Odpowiedź: B

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!