Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 7396827

Na rysunku odcinek AB jest średnicą okręgu, a kąt ACD ma miarę  ∘ 50 . Miara kąta DAB jest równa


PIC


A) 4 0∘ B) 25∘ C) 30 ∘ D) 45∘

Wersja PDF
Rozwiązanie

Sposób I

Patrzymy na trójkąt ABD .


PIC

Ponieważ ∡ADB jest oparty na średnicy, więc

 ∘ ∡ADB = 90 .

Ponadto, kąty ∡ACD i ∡ABD są oparte na tym samym łuku, więc

 ∘ ∡ABD = ∡ACD = 50 .

Zatem

 ∘ ∘ ∘ ∘ ∘ α = 180 − ∡ABD − ∡ADB = 180 − 50 − 90 = 40 .

Sposób II

Niech S będzie środkiem okręgu i dorysujmy promień SD . Wtedy

∡ASD = 2∡ACD = 100 ∘.

Trójkąt ASD jest równoramienny, więc

 180∘-−-∡ASD---- ∘ α = ∡DAS = 2 = 40 .

 
Odpowiedź: A

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!