Zadanie nr 7875913
Dana jest funkcja dla .
- zapisz wzór tej funkcji opuszczając symbol wartości bezwzględnej,
- naszkicuj wykres funkcji ,
- naszkicuj wykres funkcji .
Rozwiązanie
Zauważmy, że dla oraz dla , zatem
Teraz bez trudu szkicujemy wykres funkcji : dla jest to kawałek prostej , a dla kawałek prostej .
Wykres funkcji powstaje z wykresu przez odbicie względem osi .
Odpowiedź: