Zadanie nr 5123280
Dany jest czworokąt wypukły , w którym
,
i
. Oblicz pole czworokąta
.
Rozwiązanie
Jak zwykle, zacznijmy od schematycznego rysunku.
Zauważmy, że trójkąt jest równoramienny z kątem między ramionami równym
, więc jest to trójkąt równoboczny. W szczególności
i
. To oznacza, że trójkąt
jest równoramienny i

Stąd

Teraz już łatwo obliczyć pole czworokąta .

Odpowiedź: