Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6768127

Wyznacz długości boków trójkąta wiedząc, że są one kolejnymi liczbami naturalnymi zaś największy kąt jest dwa razy większy od kąta najmniejszego.

Wersja PDF
Rozwiązanie

Oznaczmy długość boku leżącego naprzeciwko α przez x .


PIC


Ponieważ naprzeciwko największego kąta leży najdłuższy bok, to bok naprzeciwko 2α ma długość x+ 2 , a trzeci z boków długość x + 1 . Na mocy twierdzenia sinusów mamy

--x-- -x+--2 sinα = sin 2α x x + 2 ----- = ------------ sinα 2 sinα cos α co sα = x+--2. 2x

Z drugiej strony, na mocy twierdzenia cosinusów

 2 2 2 x = (x + 1 ) + (x + 2 ) − 2(x + 1 )(x+ 2)cos α 0 = (x + 1 )2 + ((x + 2)2 − x2) − 2(x + 1)(x + 2)cos α 0 = (x + 1 )2 + 2(2x + 2)− 2(x+ 1)(x + 2)co sα 2 0 = (x + 1 ) + 4(x + 1 )− 2 (x + 1)(x+ 2)cos α / : (x+ 1) 0 = x + 1 + 4 − 2(x + 2 )cos α / : (2 (x+ 2)) x + 5 co sα = ------. 2x + 4

Porównując wyliczone wartości cos α otrzymujemy

x + 2 x+ 5 ------= ------- 2x 2x + 4 x-+-2-= x-+-5- x x + 2 (x + 2)2 = x (x+ 5) x2 + 4x + 4 = x2 + 5x x = 4 .

 
Odpowiedź: 4,5,6

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!