Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 8600637

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 18. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy 0,8. Oblicz pole powierzchni całkowitej tego graniastosłupa.

Wersja PDF
Rozwiązanie

Rozpoczynamy od rysunku.


PIC


Oznaczmy przez a długość krawędzi podstawy graniastosłupa. Korzystając ze wzoru na długość przekątnej kwadratu mamy

 √ -- AC = a 2.

Z podanego cosinusa kąta α między przekątną graniastosłupa, a płaszczyzną podstawy mamy

 √ -- √ -- 4 AC a 2 √ -- 5 5 2 --= cosα = ----= ----- ⇒ EC = a 2 ⋅--= ----a. 5 EC EC 4 4

Piszemy teraz twierdzenie Pitagorasa w trójkącie prostokątnym ACE .

AC 2 + AE 2 = EC 2 2a2 + 324 = 50a2 16 18-2 16- 324 = 16a / ⋅ 18 2 √ --- √ -- a = 18 ⋅16 ⇒ a = 4 18 = 12 2.

Pozostało obliczyć pole powierzchni całkowitej graniastosłupa.

 √ -- P = 2PABCD + 4PABFE = 2a2 + 4⋅a ⋅18 = 5 76+ 864 2.

 
Odpowiedź:  √ -- Pc = 5 76+ 864 2

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!