Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9515230

Krawędź podstawy graniastosłupa prawidłowego czworokątnego ma długość 8 cm, a jego wysokość 12 cm. Połączono środki dwóch sąsiednich krawędzi dolnej podstawy oraz najbardziej odległy od tego odcinka wierzchołek górnej podstawy. Oblicz pole otrzymanego trójkąta.

Wersja PDF
Rozwiązanie

Rozpoczynamy od szkicowego rysunku.


PIC


Podstawa KL otrzymanego trójkąta KLE jest odcinkiem łączącym środki boków w trójkącie ABD , więc

 -- -- KL = 1-BD = 1⋅ 8√ 2 = 4√ 2. 2 2

Ponadto

 √ -- √ -- FC = 3-AC = 3⋅ 8 2 = 6 2. 4 4

Wysokość FE trójkąta KLE obliczamy z trójkąta prostokątnego FCE .

 ∘ ---2-----2- √ --------- √ ---- √ -- F E = FC + CE = 72+ 144 = 21 6 = 6 6.

Pole przekroju jest więc równe

 1 1 √ -- √ -- √ -- PKLE = --KL ⋅F E = -⋅ 4 2⋅ 6 6 = 24 3 cm 3. 2 2

 
Odpowiedź:  √ -- 3 24 3 cm

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!