Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6271544

Wykaż, że liczba  n n+1 x = 4 − 5 ⋅2 + 25 jest dla dowolnej liczby naturalnej n kwadratem liczby całkowitej.

Wersja PDF
Rozwiązanie

Przekształcamy wzór

 n n+1 n 2 n 2 x = 4 − 5⋅2 + 25 = (2 ) − 5 ⋅2 ⋅2+ 5 = (2n − 5)2.

Zatem dla każdej liczby naturalnej n liczba x jest kwadratem liczby 2n − 5 która jest oczywiście liczbą całkowitą.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!