Zadanie nr 7715478
Punkt kratowy to miejsce przecięcia się linii kwadratowej siatki. Pole wielokąta, którego wierzchołki znajdują się w punktach kratowych kwadratowej siatki na płaszczyźnie, można obliczyć ze wzoru Picka:
gdzie oznacza pole wielokąta, – liczbę punktów kratowych leżących wewnątrz wielokąta, a – liczbę punktów kratowych leżących na brzegu tego wielokąta.
W wielokącie przedstawionym na rysunku oraz , zatem .
Wielokąt, którego pole jest równe 15, może mieć A/B punktów kratowych leżących na brzegu wielokąta.
A) 7 B) 8
Pole wielokąta, który ma dwukrotnie więcej punktów kratowych leżących na brzegu wielokąta niż punktów leżących wewnątrz, wyraża się liczbą C/D.
C) parzystą D) nieparzystą
Rozwiązanie
Jeżeli pole wielokąta jest liczbą całkowitą, to liczbą całkowitą musi tez być
To oznacza, że nie może być równe 7.
Jeżeli , to pole
jest liczbą nieparzystą.
Odpowiedź: B, D