Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 1825902

Ile jest liczb 2008–cyfrowych, których każde dwie kolejne cyfry tworzą liczbę podzielną przez 17 lub przez 23?
A) 5 B) 6 C) 7 D) 9 E) Więcej niż 9

Wersja PDF
Rozwiązanie

Wypiszmy najpierw dwucyfrowe wielokrotności 17 i 23

17 ,34,51,68,85 23 ,46,69,92

Zauważmy, że każda cyfra z wyjątkiem 6 i 7 jednoznacznie wyznacza kolejną cyfrę, 7 nie wyznacza żadnej cyfry, a 6 wyznacza dwie. Ponadto, jeżeli po 6 wybierzemy 8, to mamy ciąg 6,8,5,1,7 którego nie można już kontynuować – nazwijmy ten ciąg typem I. Jeżeli natomiast po 6 wybierzemy 9, to mamy

6,9 ,2,3,4,6,...

i jesteśmy w punkcie wyjścia, nazwijmy ten ciąg typem II.

Widzimy zatem, że jedynym sposobem pisania długich liczb o podanej własności jest iterowanie ciągu typu II i ewentualnie zmiana na ciąg typu I w końcówce.

Ciagów, które nie zawierają ciągu typu I w końcówce jest tyle ile wyborów pierwszej cyfry dla danej liczby, czyli 5 (mamy do wyboru 6,9,2,3,4).

Jeżeli w końcówce mamy kawałek ciągu typu I, to na tę końcówkę mamy 4 możliwości

6,8,5 ,1 ,7 6,8,5 ,1 6,8,5 6,8.

Cała reszta danej liczby jest już jednoznacznie wyznaczona (bo jest typu II).

Jest zatem 9 takich liczb.  
Odpowiedź: D

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!