Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 4701050

Udowodnij, że jeżeli cztery liczby dodatnie a,b ,c i d są kolejnymi wyrazami ciągu geometrycznego, to a+ d ≥ b + c .

Wersja PDF
Rozwiązanie

Wiemy, że b = aq ,  2 c = aq i  3 d = aq . Przekształćmy podaną nierówność.

 3 2 a+ aq ≥ aq+ aq 1+ q3 ≥ q+ q2 2 (1+ q)(1− q+ q ) ≥ q(1+ q).

Chcemy teraz podzielić przez 1+ q . Możemy to zrobić, bo wiemy, że liczby a,b,c,d są dodatnie, więc q > 0 .

1 − q + q2 ≥ q 2 q − 2q + 1 ≥ 0 (q − 1)2 ≥ 0 .

Otrzymana nierówność jest oczywiście prawdziwa, a wszystkie przekształcenia były równoważnościami, więc prawdziwa jest też wyjściowa nierówność.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!