Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Wyszukiwanie zadań

W trójkącie ABC poprowadzono prostą MN równoległą do prostej AB tak, że M należy do AC , N należy do BC oraz |MN | = |AM |+ |BN | . Oblicz |MN | , jeśli |AB | = c , a miary kątów trójkąta przy boku AB wynoszą α oraz β .

Odcinki DH i EI są równoległe do boku BC trójkąta ABC , a odcinki DF i EG są równoległe do boku AC . Uzasadnij, że jeżeli |CF|= |CH| |FG | |HA| , to  2 |AD | = |DE |⋅|DB | .


PIC