Zadania.info Największy internetowy zbiór zadań z matematyki

/Konkursy/Zadania/Geometria/Planimetria/Trójkąt/Odcinki równoległe do boków

Wyszukiwanie zadań

W trójkącie ABC poprowadzono prostą MN równoległą do prostej AB tak, że M należy do AC , N należy do BC oraz |MN | = |AM |+ |BN | . Oblicz |MN | , jeśli |AB | = c , a miary kątów trójkąta przy boku AB wynoszą α oraz β .

W trójkącie ABC na boku AB wybrano takie punkty  ′ A i  ′ B , że

 1 |AA ′| = |BB ′| < --|AB |. 2

Przez punkty  ′ A i  ′ B poprowadzono proste równoległe do boków odpowiednio AC i BC . Proste te przecięły się w punkcie S . Wykaż, że odcinek CS jest zawarty w środkowej trójkąta ABC .

Odcinki DH i EI są równoległe do boku BC trójkąta ABC , a odcinki DF i EG są równoległe do boku AC . Uzasadnij, że jeżeli |CF|= |CH| |FG | |HA| , to  2 |AD | = |DE |⋅|DB | .


PIC


spinner