/Szkoła średnia/Liczby/Liczby całkowite/Podzielność

Zadanie nr 9769644

Dodaj do ulubionych
Dodaj do rozwiązanych

Wykaż, że suma sześcianów trzech kolejnych liczb naturalnych nieparzystych jest podzielna przez 3.

Rozwiązanie

Trzy kolejne nieparzyste liczby naturalne możemy oznaczyć przez 2n − 1,2n + 1,2n + 3 . Zatem ich suma sześcianów jest równa

 3 3 3 (2n − 1) + (2n + 1) + (2n + 3) = = (8n3 − 12n 2 + 6n− 1)+ (8n3 + 12n 2 + 6n + 1)+ (8n 3 + 36n2 + 54n + 2 7) = 24n3 + 36n 2 + 66n + 27 = 3 (8n3 + 12n2 + 22n + 9).

Teraz widać gołym okiem, że powyższa suma jest liczbą podzielną przez 3.

Wersja PDF
spinner