Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 4013588

Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe  2 10 0 cm , a jego pole powierzchni bocznej jest równe 26 0 cm 2 . Oblicz objętość tego ostrosłupa.

Wersja PDF
Rozwiązanie

Zacznijmy od rysunku.


PIC


Wiemy, że kwadrat w podstawie ma pole 100 cm 2 , więc jego bok ma długość 10 cm. W takim razie z podanego pola powierzchni bocznej mamy równanie

 1- 4 ⋅2 ah = 26 0 4 ⋅5h = 260 ⇒ h = 13.

Z trójkąta prostokątnego EF S mamy

 ∘ -----(--)2- √ --------- √ ---- H 2 = h2 − a- = 1 69− 25 = 144 = 12. 2

Objętość ostrosłupa jest więc równa

 1 1 V = -⋅ Pp ⋅ H = --⋅100 ⋅12 = 4 00. 3 3

 
Odpowiedź: 400 cm 3

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!