Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 8287402

W okrąg wpisano trójkąt ABC , w którym  ∘ |∡A | = 50 i  ∘ |∡B | = 70 . Przez wierzchołek kąta C poprowadzono styczną do okręgu, przecinającą przedłużenie boku AB w punkcie D . Oblicz miary kątów trójkąta BCD .

Wersja PDF
Rozwiązanie

Zacznijmy od rysunku.


PIC


Jeżeli połączymy środek okręgu z wierzchołkami B i C , to otrzymamy trójkąt równoramienny o kącie ∡BOC = 2∡A = 100∘ (kąty wpisany i środkowy oparte na wspólnej cięciwie). Zatem

∡OBC = ∡OCB = 40∘.

Ponieważ promień OC jest prostopadły do stycznej CD , mamy

∡DCB = 90∘ − ∡OCB = 50∘.

Ponadto

∡DBC = 180∘ − ∡ABC = 110∘.

Stąd

∡BDC = 180 ∘ − ∡DBC − ∡DCB = 180∘ − 110∘ − 50 ∘ = 20∘.

 
Odpowiedź:  ∘ ∘ ∘ ∡DCB = 50 ,∡DBC = 110 ,∡BDC = 2 0

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!