Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9611474

W ostrosłupie prawidłowym czworokątnym o krawędzi podstawy 18 cm, kąt między wysokościami przeciwległych ścian bocznych ma miarę α = 60∘ . Oblicz pole powierzchni bocznej tego ostrosłupa. Wykonaj odpowiedni rysunek i zaznacz kąt α .

Wersja PDF
Rozwiązanie

Rozpoczynamy od rysunku.


PIC


Wysokości ścian bocznych to odcinki SE i SF łączące wierzchołek S ze środkami krawędzi BC i AD . Trójkąt SEF jest równoramienny i kąt między jego ramionami ma miarę 60∘ , więc jest równoboczny. W takim razie SF = 18 i możemy policzyć pole powierzchni bocznej ostrosłupa

 1 Pb = 4 ⋅PBCS = 4⋅ --⋅18⋅ 18 = 2 ⋅182 = 648 . 2

 
Odpowiedź:  2 648 cm

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!