Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 6148316

Rozważmy zbiór wszystkich czteroelementowych podzbiorów zbioru wierzchołków pewnego prostopadłościanu. Oblicz prawdopodobieństwo wylosowania takiego podzbioru, którego elementy są wierzchołkami prostokąta.

Wersja PDF
Rozwiązanie

Jeżeli za zdarzenia elementarne przyjmiemy zbiory wylosowanych wierzchołków to

 ( ) |Ω | = 8 = 8⋅7-⋅6-⋅5-= 7 ⋅2 ⋅5 = 70. 4 2⋅ 3⋅4

Zdarzenia sprzyjające liczymy ręcznie. Jest 6 ścian, oraz 6 prostokątów przechodzących przez środek prostopadłościanu i łączących równoległe krawędzie z przeciwległych ścian (każdy taki prostokąt jest wyznaczony przez przekątną ściany, więc jest ich=połowa wszystkich przekątnych ścian=6).


PIC


Zatem prawdopodobieństwo wynosi

P = 12-= 6-. 70 35

 
Odpowiedź: 365

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!