/Szkoła średnia/Prawdopodobieństwo/Z definicji/Geometryczne

Zadanie nr 9710477

Dodaj do ulubionych
Dodaj do rozwiązanych

Spośród wierzchołków graniastosłupa sześciokątnego prostego losujemy jeden wierzchołek z dolnej podstawy i jeden wierzchołek z górnej podstawy. Oblicz prawdopodobieństwo tego, że wylosowane wierzchołki są końcami krawędzi bocznej graniastosłupa.


PIC


Rozwiązanie

Wierzchołek górnej podstawy możemy wybrać na 6 sposobów, wierzchołek dolnej podstawy też wybieramy na 6 sposobów. Zatem jest

|Ω | = 6⋅6 = 36

możliwości wybrania tych wierzchołków. Zdarzeń sprzyjających jest tyle, ile krawędzi bocznych, czyli 6. Prawdopodobieństwo jest więc równe

-6- 1- 36 = 6.

 
Odpowiedź: 1 6

Wersja PDF
spinner