Dane są 2 koła styczne zewnętrznie o promieniach i () oraz środkach i . Do tych kół poprowadzono wspólną styczną, która jest styczna do tych okręgów w punktach i odpowiednio (). Oblicz pole trójkąta , gdzie jest punktem przecięcia się prostych i .
Dane są 2 koła styczne zewnętrznie o promieniach i () oraz środkach i . Do tych kół poprowadzono wspólną styczną, która jest styczna do tych okręgów w punktach i odpowiednio (). Oblicz pole trójkąta , gdzie jest punktem przecięcia się prostych i .
Prosta jest styczna do okręgu w punkcie . Oblicz miarę zaznaczonego kąta jeśli .
Odległość między środkami okręgów o promieniach 2 i 7 wynosi 13. Prosta jest styczna do obu okręgów w punktach i . Oblicz długość odcinka . Rozważ dwa przypadki.
Ramiona kąta ostrego o mierze przecięto prostą prostopadłą do dwusiecznej kąta, która jest odległa o od jego wierzchołka. W ten kąt wpisano dwa okręgi, każdy styczny do obu ramion kąta i prostej . Oblicz odległość środków tych okręgów.
Do dwóch okręgów przecinających się w punktach i poprowadzono wspólną styczną , przy czym punkt należy do pierwszego, a punkt do drugiego okręgu. Wykaż, że prosta dzieli odcinek na połowy.
Średnica i cięciwa okręgu o środku i promieniu przecinają się w punkcie takim, że . Wykaż, że .
Dany jest okrąg o środku w punkcie i promieniu . Na przedłużeniu cięciwy poza punkt odłożono odcinek równy promieniowi danego okręgu. Przez punkty i poprowadzono prostą. Prosta przecina dany okrąg w punktach i (zobacz rysunek). Wykaż, że jeżeli miara kąta jest równa , to miara kąta jest równa .