Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 4919014

W graniastosłupie prawidłowym trójkątnym przekątna ściany bocznej tworzy z płaszczyzną podstawy kąt o mierze równej 45∘ . Oblicz pole powierzchni bocznej tego graniastosłupa, wiedząc, że jego objętość jest równa 16 √ 3- .

Wersja PDF
Rozwiązanie

Zaczynamy od szkicowego rysunku.


PIC


Zauważmy, że trójkąt BCF jest prostokątny z kątem 45 ∘ , więc jest połówką kwadratu. W takim razie ściany boczne graniastosłupa to kwadraty. Jeżeli oznaczymy bok tych kwadratów przez a , to z podanej objętości mamy

 -- -- √ -- a2√ 3 a3√ 3 4 16 3 = ------⋅a = ------ / ⋅√--- 4 4 3 64 = a 3 ⇒ a = 4.

Pole powierzchni bocznej jest więc równe

 2 3a = 3⋅1 6 = 48.

 
Odpowiedź: 48

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!