Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9582291

W graniastosłupie prawidłowym sześciokątnym wszystkie krawędzie mają jednakową długość. Wyznacz tangensy kątów nachylenia przekątnych graniastosłupa do płaszczyzny podstawy.

Wersja PDF
Rozwiązanie

Zaczynamy od rysunku i oznaczmy długość krawędzi graniastosłupa przez a .


PIC


Widać, że w graniastosłupie są dwa rodzaje przekątnych takie jak CB i takie jak CD . Ponieważ łącząc wierzchołki sześciokąta foremnego z jego środkiem otrzymujemy 6 trójkątów równobocznych, mamy

 AC-- -a- 1- AB = 2a ⇒ tgα = AB = 2a = 2

Aby wyliczyć tangens β zauważmy, że odcinek AD jest dwa razy dłuższy od wysokości trójkąta równobocznego o boku a , ma więc długość

 √ -- AD = a 3.

Zatem

 AC a √ 3- tg β = ----= -√---= ----. AD a 3 3

 
Odpowiedź: 12 i √- 33-

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!