Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9769323

W graniastosłupie prawidłowym sześciokątnym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Wyznacz tangensy kątów nachylenia przekątnych graniastosłupa do płaszczyzny podstawy.

Wersja PDF
Rozwiązanie

Zaczynamy od rysunku i oznaczmy długość krawędzi graniastosłupa przez a .


PIC


Widać, że w graniastosłupie są dwa rodzaje przekątnych takie jak CB i takie jak CD . Ponieważ łącząc wierzchołki sześciokąta foremnego z jego środkiem otrzymujemy 6 trójkątów równobocznych, mamy

 AC-- 2a- AB = 2a ⇒ tg α = AB = 2a = 1

Aby wyliczyć tangens β zauważmy, że odcinek AD jest dwa razy dłuższy od wysokości trójkąta równobocznego o boku a , ma więc długość

 √ -- AD = a 3.

Zatem

 AC 2a 2√ 3- tg β = ---- = -√---= ----. AD a 3 3

 
Odpowiedź: 1 i  √ - 2-33

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!