/Szkoła średnia/Zadania maturalne
Poprawkowy Egzamin Maturalny
z Matematyki poziom podstawowy 22 sierpnia 2023 Czas pracy: 180 minut
Dana jest nierówność

Na którym rysunku poprawnie zaznaczono na osi liczbowej zbiór wszystkich liczb rzeczywistych spełniających powyższą nierówność?
Liczba jest równa
A) B)
C) 7 D)
Liczba jest równa
A) B)
C)
D)
Wykaż, że dla każdej liczby naturalnej liczba
jest podzielna przez 6.
Wartość wyrażenia jest równa
A) B)
C) 3 D)
Wartość wyrażenia jest równa
A) B) 0 C) 6 D)
Dla każdej liczby rzeczywistej różnej od 0 wartość wyrażenia
jest równa wartości wyrażenia
A) B)
C)
D)
Równanie w zbiorze liczb rzeczywistych ma dokładnie
A) jedno rozwiązanie.
B) dwa rozwiązania.
C) trzy rozwiązania.
D) cztery rozwiązania.
Rozwiąż równanie .
W kartezjańskim układzie współrzędnych , punkt
jest punktem przecięcia prostych o równaniach
A) i
B)
i
C) i
D)
i
Miejscem zerowym funkcji liniowej jest liczba 1. Wykres tej funkcji przechodzi przez punkt
. Wzór funkcji
ma postać
A) B)
C) D)
Funkcja jest określona dla każdej liczby rzeczywistej
wzorem
, gdzie
jest pewną liczbą rzeczywistą. Ta funkcja spełnia warunek
. Wartość współczynnika
we wzorze tej funkcji jest równa
A) B) 3 C)
D) 4
Funkcja kwadratowa jest określona wzorem
. Jednym z miejsc zerowych tej funkcji jest liczba
. Drugim miejscem zerowym funkcji
jest liczba
A) B)
C) 23 D) 29
Informacja do zadań 14.1 – 14.3
W kartezjańskim układzie współrzędnych narysowano wykres funkcji
(zobacz rysunek).

Funkcja jest rosnąca w przedziale
A) B)
C)
D)
Wyznacz zbiór wszystkich argumentów, dla których funkcja przyjmuje wartości większe od 1.
Funkcja jest określona za pomocą funkcji
następująco:
dla każdego
. Na jednym z rysunków A–D przedstawiono, w kartezjańskim układzie współrzędnych
, wykres funkcji
. Wykres funkcji
przedstawiono na rysunku
Funkcje oraz
są określone dla każdej liczby rzeczywistej
. Wzory tych funkcji podano poniżej. Dokończ zdanie. Wybierz dwie właściwe odpowiedzi spośród podanych.
Przedział jest zbiorem wartości funkcji
A) B)
C)
D) E)
F)
Ciąg jest określony wzorem
dla każdej liczby naturalnej
. Trzeci wyraz tego ciągu jest równy
A) 2 B) C) 3 D)
Dany jest ciąg geometryczny , określony dla każdej liczby naturalnej
. Pierwszy wyraz tego ciągu jest równy 128, natomiast iloraz ciągu jest równy
. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.
Wyraz ![]() | P | F |
Różnica ![]() | P | F |
Ciąg jest arytmetyczny. Oblicz
.
Kąt jest ostry i
. Sinus kąta
jest równy
A) B)
C)
D)
Trapez , o polu równym 52 i obwodzie 36, jest podobny do trapezu
. Pole trapezu
jest równe 13. Obwód trapezu
jest równy
A) 18 B) 9 C) D)
Koło ma promień równy 3. Obwód wycinka tego koła o kącie środkowym jest równy
A) B)
C)
D)
W okręgu kąt środkowy
oraz kąt wpisany
są oparte na tym samym łuku. Kąt
ma miarę o
większą od kąta
. Miara kąta
jest równa
A) B)
C)
D)
W trójkącie długość boku
jest równa 3, a długość boku
jest równa 4. Dwusieczna kąta
przecina bok
w punkcie
. Stosunek
jest równy
A) 4 : 3 B) 4 : 7 C) 3 : 4 D) 3 : 7
Dany jest trapez równoramienny , w którym podstawa
ma długość 6, ramię
ma długość 4, a kąty
oraz
mają miarę
(zobacz rysunek).
Oblicz pole tego trapezu.
W kartezjańskim układzie współrzędnych dane są prosta
o równaniu
oraz punkt
. Prosta przechodząca przez punkt
i równoległa do prostej
ma równanie
A) B)
C)
D)
W kartezjańskim układzie współrzędnych dany jest okrąg
o środku
i promieniu 3. Okrąg
jest określony równaniem
A) B)
C) D)
W kartezjańskim układzie współrzędnych proste o równaniach:
przecinają się w punktach, które są wierzchołkami trójkąta .
Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A albo B oraz jej uzasadnienie 1, 2 albo 3.
Trójkąt jest
A) równoramienny, | B) prostokątny, |
ponieważ
1) | oś ![]() |
2) | dwie z tych prostych są prostopadłe. |
3) | oś ![]() |
W kartezjańskim układzie współrzędnych punkt
jest wierzchołkiem równoległoboku
. Punkt
jest środkiem symetrii tego równoległoboku. Długość przekątnej
równoległoboku
jest równa
A) B)
C)
D)
Informacja do zadań 29.1 i 29.2
Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 6.
Pole powierzchni całkowitej tego graniastosłupa jest równe
A) B)
C)
D)
Oblicz cosinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy graniastosłupa.
Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest
A) B)
C)
D)
Ze zbioru pięciu liczb losujemy bez zwracania kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia
polegającego na tym, że obie wylosowane liczby są nieparzyste.
Na diagramie przedstawiono rozkład wynagrodzenia brutto wszystkich stu pracowników pewnej firmy za styczeń 2023 roku.
Średnia wynagrodzenia brutto wszystkich pracowników tej firmy za styczeń 2023 roku jest równa
A) 5 690 zł B) 5 280 zł C) 6 257 zł D) 5 900 zł
Zakład stolarski produkuje krzesła, które sprzedaje po 196 złotych za sztukę. Właściciel, na podstawie analizy rzeczywistych wpływów i wydatków, stwierdził, że:
-
przychód
(w złotych) ze sprzedaży
krzeseł można opisać funkcją
-
koszt
(w złotych) produkcji
krzeseł dziennie można opisać funkcją
Dziennie w zakładzie można wyprodukować co najwyżej 30 krzeseł. Oblicz, ile krzeseł powinien dziennie sprzedawać zakład, aby zysk ze sprzedaży krzeseł wyprodukowanych przez ten zakład w ciągu jednego dnia był możliwie największy. Oblicz ten największy zysk.