Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 1908148

Kwadrat ABCD jest wpisany w okrąg o równaniu  2 2 (x − 4 ) + (y − 4) = 10 oraz A = (3,1) . Wyznacz równanie prostej zawierającej przekątną BD tego kwadratu.

Wersja PDF
Rozwiązanie

Dany okrąg to okrąg o środku S = (4,4) i przechodzący przez punkt A = (3,1) (o promieniu √ --- 10 ). To pozwala wykonać szkicowy rysunek.


PIC


Zauważmy, że szukana prosta BD to prosta prostopadła do prostej AS i przechodząca przez S (bo przekątne kwadratu są prostopadłe).

Sposób I

Rozpocznijmy od napisania równania prostej AS – szukamy prostej w postaci y = ax+ b . Podstawiając współrzędne punktów A i S mamy

{ 1 = 3a+ b 4 = 4a+ b.

Odejmując od drugiego równania pierwsze (żeby skrócić b ) mamy a = 3 . Współczynnika b możemy nie obliczać, bo nie jest nam do niczego potrzebny.

Szukana prosta BD jest prostopadła do AS , więc ma równanie postaci  1 y = − 3x + b . Współczynnik b wyznaczamy podstawiając współrzędne punktu S .

4 = − 1-⋅4 + b ⇒ b = 16-. 3 3

Zatem szukana prosta ma równanie  1 16 y = − 3x + 3-

Sposób II

Równanie prostej BD można łatwo napisać jeżeli skorzystamy ze wzoru na równanie prostej prostopadłej do wektora → v = [p,q] i przechodzącej przez punkt S = (x 0,y0)

p(x − x0) + q(y − y0) = 0 .

W naszej sytuacji mamy S = (4,4 ) i

→ −→ v = AS = [4− 3,4− 1] = [1,3].

Prosta BD ma więc równanie

(x− 4)+ 3(y− 4) = 0 3y = −x + 16 / : 3 1 16 y = − --x+ --. 3 3

 
Odpowiedź:  1 16 y = − 3x+ 3-

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!