Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 1837133

Wykaż, że jeżeli w czworokącie ABCD dwusieczne kątów przy wierzchołkach A i C przecinają dwusieczne kątów przy wierzchołkach B i D w czterech różnych punktach, to punkty te leżą na pewnym okręgu.

Wersja PDF
Rozwiązanie

Zaczynamy od rysunku.


PIC


Oznaczymy kąty czworokąta przez 2α,2β ,2γ,2δ . Patrząc na trójkąty AKD ,CLD ,BMC i ANB łatwo wyliczamy kąty czworokąta KLMN

 ∘ ∡K = 1 80 − (α+ δ) ∡L = 18 0∘ − (γ + δ) ∘ ∡M = 180 − (β + γ) ∡N = 180∘ − (α + β).

Z równości tych łatwo zobaczyć, że

∡K + ∡M = ∡L + ∡N .

I to koniec, bo równość sum miar przeciwległych kątów to warunek wystarczający na to, aby na czworokącie dało się opisać okrąg.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!