Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 8863014

Przekątna AC czworokąta ABCD wpisanego w okrąg jest średnicą tego okręgu (zobacz rysunek). Udowodnij, że |AB |2 + |BC |2 = |AD |2 + |DC |2 .


PIC


Wersja PDF
Rozwiązanie

Zauważmy, że trójkąty ABC i ADC są prostokątne (bo kąty oparte na średnicy są proste). Mamy stąd

AB 2 + BC 2 = AC 2 = AD 2 + DC 2.
Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!