Zadanie nr 5490755
Wykaż, ze dla dowolnych liczb rzeczywistych prawdziwa jest nierówność
.
Rozwiązanie
Daną nierówność możemy zapisać w postaci

Sposób I
Przekształcamy nierówność w sposób równoważny,

Oczywiście nierówność ta jest spełniona, a przekształcaliśmy ją w sposób równoważny, więc wyjściowa nierówność też musiała być spełniona.
Sposób II
Traktujemy nierówność, którą mamy udowodnić

jak zwykłą nierówność kwadratową z niewiadomą i parametrem
. Liczymy
-ę.

Ponieważ jest niedodatnia, powyższa nierówność jest zawsze spełniona (bo parabola będąca wykresem lewej strony jest powyżej osi
).