Zadanie nr 3682797
Romb o boku długości obraca się dokoła jednej z przekątnych. Wyznacz pole tego spośród takich rombów, dla którego objętość otrzymanej bryły jest największa.
Rozwiązanie
Szkicujemy bryłę, którą otrzymamy obracając romb.
Widać, że są to dwa stożki sklejone podstawami. Jeżeli oznaczymy promień podstawy utworzonych stożków przez , a ich wysokość przez , to mamy
i objętość otrzymanej bryły jest równa
Wyznaczenie bryły o największej objętości sprowadza się więc do wyznaczenia największej wartości funkcji
Liczymy pochodną tej funkcji
Dziedziną funkcji jest przedział i w tym przedziale pochodna ma jedno miejsce zerowe . Ponadto na lewo od tego miejsca zerowego pochodna jest dodatnia, a na prawo jest ujemna. To oznacza, że funkcja rośnie w przedziale i maleje w przedziale . W takim razie największą objętość bryły otrzymamy dla . Wtedy
Pole powierzchni rombu dla którego otrzymujemy tę maksymalną objętość jest równe (korzystamy ze wzoru na pole rombu z przekątnymi)
Odpowiedź: