Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 9822312

Dany jest równoramienny trójkąt prostokątny, którego przeciwprostokątna ma długość 2. Bok AB prostokąta ABCD zawiera się w przeciwprostokątnej tego trójkąta, zaś punkty C i D należą do przyprostokątnych. Oblicz długości boków prostokąta ABCD wiedząc, że kwadrat długości jego przekątnej AC ma wartość najmniejszą z możliwych.

Wersja PDF
Rozwiązanie

Zaczynamy od rysunku.


PIC


Zauważmy, że trójkąty CBL i ADK są oba prostokątne i każdy z nich ma wspólny kąt z wyjściowym trójkątem KLM , czyli oba są prostokątne równoramienne. W takim razie

LB = BC = AD = AK .

Oznaczmy długość tego odcinka przez x . Wtedy x ∈ (0,1) i

AB = KL − 2x = 2− 2x

i stosując twierdzenie Pitagorasa w trójkącie ABC mamy

f(x) = AC 2 = x2 + (2 − 2x)2 = x 2 + 4 − 8x + 4x2 = 5x 2 − 8x + 4 .

Wykresem otrzymanej funkcji jest parabola o ramionach skierowanych w górę, więc najmniejszą wartość przyjmuje ona w wierzchołku, czyli dla

 −b-- 8-- 4- x = xw = 2a = 10 = 5.

Zatem długości boków prostokąta są równe BC = x = 45 i

 8 2 AB = 2 − 2x = 2− --= --. 5 5

 
Odpowiedź: 45, 25

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!