Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 8749244

Dany jest okrąg o równaniu  2 2 (x+ 2) + (y− 3) = 12 oraz punkt A = (−2 ,0) . Napisz równanie symetralnej odcinka, którego końcami są dany punkt A i środek S danego okręgu.

Wersja PDF
Rozwiązanie

PIC


Środek podanego okręgu to punkt S = (− 2,3) . Musimy zatem napisać równanie symetralnej odcinka o końcach (− 2,0) i (− 2,3) . Środek tego odcinka ma współrzędne (− 2, 3 ) 2 . Ponieważ odcinek ten jest pionowy, to szukana symetralna jest poziomą prostą i ma przechodzić przez punkt  3 (− 2,2 ) . Jest to zatem prosta  3 y = 2 .  
Odpowiedź: y = 32

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!