Zadania.info
Największy internetowy zbiór zadań z matematyki
cornersUpL
cornersUpR

Zadania

Na skróty

Recenzje

Linki sponsorowane

cornersM

Linki sponsorowane

cornersR
Zadanie nr 7268198

Udowodnij, że dla dowolnych liczb a,b,c ∈ R + zachodzi nierówność

 ( 1 1 1) (a + b+ c) --+ -+ -- ≥ 9. a b c
Wersja PDF
Rozwiązanie

Wymnażając lewą stronę nierówności otrzymujemy

 a b a c b c 3+ --+ --+ -+ --+ --+ --≥ 9 ( b a) (c a )c ( b ) a- b- a- c- b- c- b + a + c + a + c + b ≥ 6 .

Aby wykazać powyższą nierówność, wystarczy pokazać, że każdy z nawiasów jest ≥ 2 . Sprawdźmy dla przykładu pierwszy nawias

a b --+ --≥ 2 b 2 a2 a--+-b- ≥ 2 ab a2 + b2 ≥ 2ab (a − b)2 ≥ 0.

Otrzymana nierówność jest oczywiście prawdziwa. Podobnie sprawdzamy pozostałe dwa wyrażenia w nawiasach.

Wersja PDF
Twoje uwagi
Nie rozumiesz fragmentu rozwiązania?
W rozwiązaniu jest błąd lub literówka?
Masz inny pomysł na rozwiązanie tego zadania?
Napisz nam o tym!