/Szkoła średnia/Geometria/Planimetria/Zadania na ekstrema/Największe pole

Zadanie nr 3385380

Dodaj do ulubionych
Dodaj do rozwiązanych

Rozpatrujemy wszystkie trójkąty równoramienne ABC (|AB | = |AC | ), na których opisano okrąg o promieniu R = 2 . Niech d oznacza długość ramienia AB trójkąta.

  • Wykaż, że pole P każdego z tych trójkątów, jako funkcja długości d , wyraża się wzorem  1- 3√ ------2- P(d) = 16d 16 − d .
  • Wyznacz dziedzinę funkcji P .
  • Oblicz długość ramienia d tego z rozpatrywanych trójkątów, który ma największe pole. Oblicz to największe pole.

Rozwiązanie

Rozwiązanie tego zadania jest dostępne tylko dla użytkowników z wykupionym abonamentem.
Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać przelewem 7,90 zł lub telefonicznie 9,90 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.
spinner