/Szkoła średnia/Geometria/Stereometria/Zadania na ekstrema/Najmniejsze pole

Zadanie nr 9104646

Dodaj do ulubionych
Dodaj do rozwiązanych

Rozważamy wszystkie graniastosłupy prawidłowe trójkątne o objętości 3456, których krawędź podstawy ma długość nie większą niż  √ -- 8 3 .

  • Wykaż, że pole P powierzchni całkowitej graniastosłupa w zależności od długości a krawędzi podstawy graniastosłupa jest określone wzorem

     √ -- √ -- a2-⋅--3 138-24--3 P (a) = 2 + a .
  • Wyznacz długość krawędzi podstawy tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.

Rozwiązanie

Rozwiązanie tego zadania jest dostępne tylko dla użytkowników z wykupionym abonamentem.
Nie chcesz się rejestrować ani opłacać abonamentu? Zapłać przelewem 7,90 zł lub telefonicznie 9,90 zł, a otrzymasz dwudziestominutowy dostęp do wszystkich materiałów dostępnych w portalu.
spinner